
6·8·0·0·0 M·A·C·H·I·N·E·S

68000 TRICKS
AND TRAPS

BY MIKE MORTON

Some assembly language programming guidelines

THE ERA OF HIGH-LEVEL LANGUAGES has not made
assembly language coding a dead art. even on modern
microprocessors designed for executing compiled high­
level code. Although personal computers are approaching
the power of mainframes. the way to get the most out of
any processor is to know when to use assembly language.
The popular Motorola MC68000 processor is a good ex­
ample; it has a fairly regular instruction set and instruc­
tions to support features of such languages as Pascal and
C. Yet the instruction set is not perfectly orthogonal-warts
in the design and implementation make the architecture
interesting for hand-coded assembly programs.

The continuing usefulness of assembly language. even
on this processor. is apparent in recent industry products.
The Macintosh ROM. for instance. is written entirely in
assembly language. yielding considerable savings in mem­
ory and speed.

In this article I'll survey some of the subtleties of the
68000 to help you avoid its pitfalls and exploit its oddi­
ties for better speed or memory use. I assume that you
have some experience using the 68000; if not. see the
bibliography at the end of this article.

TRAPS FOR THE BEGINNER
Most of the 68000's "traps" have a reason behind them;
unintuitive aspects of the processor may actually be more
useful. easier to implement. or correct in the view of the
68000 designers.

One trap is memory alignment. Although the 68000 sup­
ports byte. word. and long-word operations. word and
long-word operands must be aligned on word boundaries
(even addresses). This is because memory is grouped in

words (2 bytes) and accessed via a 16-bit bus. Instructions
must be word-aligned also. but assemblers and linkers nor­
mally do this for you.

Another trap is stack direction. The 68000 stack "grows"
toward low memory. This means that to allocate stack
space you should subtract from the stack pointer:
SUB #size,SP. 1b deallocate space (or to discard previous­
ly pushed values). add to the stack pointer. Equally con­
fusing. when allocating local storage with the LINK instruc­
tion. you must specify a negative displacement to be add­
ed to the stack pointer.

The stack pointer (SP) must stay word-aligned. If you
push or pop a byte through the SP. the processor will
move a word to or from the stack. placing the relevant
byte in the high-order half of that word. Only the SP
behaves this way; other address registers act the way you'd
expect. This may seem an anomaly in an orthogonal ar­
chitecture. but the SP must stay word-aligned so that words
and long words are pushed to even addresses.

Shift and rotate instructions can operate on the byte.
word. or long-word part of a data register. but shifts of
memory operands can be only word size. Data registers
can be shifted by up to 32 bits if the shift count is specified
in another register or by up to 8 bits if the shift count is
a constant given in the instruction. Memory can be shifted
by only 1 bit.

The syntax of two"Operand instructions may be reversed
from other machines you're used to. For instance. the

(continued)

Mike Morton received his B.A. in mathematics from Dartmouth Col­
lege. He is currently a senior software engineer for l..iJtus Develop­
ment Corporation (161 First St.. Cambridge. MA 02142).

SEPTEMBER 1986 • BY T E 163

TRICKS AND TRAPS

68000 instruction MOVEW 00,01 is equivalent to lOAD
01, DO on some other machines: that is. the contents of
the DO register are moved into 01. On the 68000. the des­
tination register-the one affected by the instruction-is
always second: The operand order for CMP instructions
is also reversed from some older machines: therefore you
would read CMP 00,01 as "compare DI to DO. " (But
beware: Some assemblers reverse the order of the
operands from Motorola's standard: UNIX assemblers
often do this.)

The 68000 provides the comparison operations shown
in table I. This includes not only all six possible relation­
ships between two numbers. but also whether numbers
are compared as signed or unsigned quantities. (Compar­
ing the word values 0006 and FFFE hexadecimal depends
on how the numbers are interpreted. If they're signed
numbers. 6 is greater than -2 . But if they're addresses.
they're unsigned. and 0006 is a lower address than FFFE.)

The confusing thing is that the expected unsigned equiv­
alents of BlT and BGE are not BHS (branch on higher
or same) and BlO (branch on lower) . Instead. Motorola
uses BCS and BCC. respectively. The processor is perfect­
ly orthogonal. providing for all types of comparisons. But
the mnemonics are asymmetrical on the unsigned side
(unless you use a nonstandard assembler or define your
own macros).

(The distinction between signed and unsigned com­
parisons comes up rarely. since they are the same unless
one of the values involved has the high-order bit Ithe sign
bitl set. However. when the distinction is significant. it can
lead to trouble. An operating system's disk allocator may
sort disk blocks using a BGT instruction. After some years.
a site tries to configure a system with more than 231 bytes
of disk storage. Everything grinds to a halt because BGT
compares 80000010 hexadecimal to 7FFFFFFO hexadeci­
mal and incorrectly finds the latter address to be greater.
A BHI instruction would have compared and sorted the
addresses correctly.)

A note on using the condition codes: After a TST in­
struction. the overflow (V) condition code is cleared. This
means that after TST. BlT is equivalent to BMI. and BGE
is the same as BPL. Stylistically. BMI and BPl make more

Table I: This table shows which branch instructions will
result in a branch taken when testing for a given relation­
ship of 01 to DO after a CMP 00,01 instruction.

Relationship Signed Unsigned

01 < DO BLT BCS (branch on Carry Set)
01 < = DO BLE BLS
01 = DO BEQ BEQ

01 * DO BNE BNE
01 > DO BGT BHI
01 > = DO BGE BCC (branch on Carry Clear)

164 BY T E • SEPTEMBER 1986

sense after a TST unless the value being tested is the dif­
ference of two other values.

TRAPS FOR EXPERTS
Some quirks of the 68000 are less intuitive and regularly
catch seasoned programmers. Some of these aspects of
the implementation suggest design difficulties and trade­
offs in the processor: others reflect the designers' ideas
on what constitutes good . programming.

Addresses and data are different. Most assemblers
quietly assemble MOVE #O,An as a MOVEA (move to an
address register) instruction without nagging the program­
mer about the distinction between MOVE and MOVEA.
But the 68000 treats data and address values very
differently.

Address operations (MOVEA. AOOA. etc.) are never
byte-size.

Word values are sign-extended to 32 bits before being
used in address operations. Thus. AOOA.W 01 ,A2 extends
the low-order word of 01 before adding it to A2. In the
68000. there is no such thing as a \6-bit address. so a
word-size value is converted to 32 bits before being used
in address operations.

Address operations never set condition codes: most
data operations do. This is useful in subroutines that return
information in the condition codes:

TSTW DO ; Set condition codes to
; return to caller.

MOVE.L (SP) + ,AD ; Pop return address into AD.
ADDW #params,SP ; Deallocate < params> bytes

; of parameters.
JMP (AD) ; Return with condition codes

; still set.

(Note that the MOVE and ADD are translated into MOVEA
and AOOA by the assembler.) The condition codes set by
the TSTW are unaffected by the remainder of the exit
sequence.

Another trap concerns loop operations. A loop ending
with a OSee instruction (such as OBEQ) loops until the
condition ee is true: this instruction can be thought of as
"decrement and branch back if condition false." This is
confusing since. if you were to write out several instruc­
tions to replace a OBEQ. they would contain a BNE to
jump back to the top of the loop. not a BEQ.

If the condition being tested for is not detected (or if
you're using OBRA). the loop will stop when the counter
reaches - 1. not O. If you want the loop always to be ex­
ecuted Once. you should enter it at the top with the count
already decremented by 1. For example. to search for the
first null (zero) byte in a table of N bytes pointed to by AI:

MOVEW#N-1,DO ; Start the loop counter

LOOP

TS1B (A1)+

; one too low.
; Come here to test
; another byte.
; Is A1's byte zero?
; (Advance after testing)

DBEQ DO.LOOP ; If not zero AND DO is
; still > = 0, loop back.

(continued)

TRICKS AND TRAPS

This loop will execute at most N times. It corresponds to
Pascal 's "repeat . .. until" construct. For the equivalent of
"while ... do, " which doesn't necessarily enter the loop:

MOVEW #N ,OO
BRA LOOPSTART

LOOP
TS1B (A1) +

LOOPSTART

OBEO OO,LOOP

; Start the loop counter normally.
; Don't fudge ~O ; jump to
; the loop end first.
; This is the loop head.
; Is A1's byte zero?
; (Advance after testing)
; Enter here to check count
; before looping.
; If not zero AN 0 DO is
; still > = 0, loop back.

If you're using OBee, don't forget to initialize the condi­
tion codes so the OBee doesn't fall through when you
jump to it. In the code above, the MOVEW #N, 00
"primes" for the loop.

Also remember that the data register used to control
the loop is decremented as a word quantity. If it's possi­
ble to have more than 216 iterations, you have to nest two
OBee loops. For example, to checksum a list of bytes
whose length is specified in the long word DO:

MOVEO #0, 03; Initialize checksum.
MOVEW 00,01 ; Low word of loop length in 01.
MOVE.L, 00,02 ; Get high word of loop length
SWAP 02 ; in 02 to use for outer loop.
BRA.S START ; Enter at the end of the loop.

LOOP: AOO.B (A1) + ,03 ; Add the next byte into sum .
START: OBRA 01, LOOP ; I nner loop: Loop on low word of

~O.
OBRA 02,LOOP ; Outer loop: Loop on high word.

Small adjustments to the stack pointer can be done with
AOOQ (or SUBQ) #n ,SP, but these instructions can
change it by at most 8 bytes. The fastest way to change
it by more than 8 bytes is with LEA n(SP),SP.

The 68000 does not allow you to execute a MOVE in­
struction with a destination relative to the program counter
(PC) . In the view of the 68000 designers, code should not
patch itself. If you must change a table in the middle of
code, you must point to it with an instruction like LEA
TABLE(PC),An and then alter it through An. (Self­
modifying code is especially bad for 68000 programs that
may someday run on the 68020, because the 68020's in­
struction cache normally assumes that code is pure.)

For no apparent reason, the CLR instruction always
reads from an operand before clearing it. But unlike BCLR,
CLR doesn't set the condition codes. Never use CLR to
write a zero to a memory-mapped device address if the
device will be affected by the read. The See instruction
and MOVEs from the status register also read before
writing but are less likely to cause problems.

Don't confuse the EXG and SWAP commands. EXG ex­
changes the 32-bit contents of two registers. SWAP swaps
the 16-bit halves of a single data register.

When indexing into an array, remember to multiply the
index register by the "stride" (bytes per element) of the
array. For instance, if DO holds an index into an array of
long words pointed to by AI. you must multiply the in-

166 B Y T E • SEPTEMBER 1986

dex by 4 to convert from long words to bytes:

MULU #4,00 ; Turn the array index into
; a byte offset.

MOVE.L 0(A1 ,00.L),01 ; Pick up the long-word
; array element in 01 .

The EOR instruction must have a data register for the
source, except for the immediate form of the instruction,
EORI.

CODING FOR SPEED: PRINCIPLES
The secret of efficient code on the 68000 can be described
using one word: "registers." Suppose, for example, that
you have two 32-bit variables. If you keep them in regis­
ters, the time to add one to the other with AOO.L 00,01
is 8 clock periods. If they're in memory pointed to by ad­
dress registers, the time to add them with MOVE.L (AO) , 00
and AOD.L 00,(A1) is 32 clock periods, four times slower!
The moral of the story is simple: Work hard to keep fre­
quently used quantities in registers.

You can learn this important rule and others by study­
ing instruction timing information (such as the tables in
the M68000 16/32-oit Microprocessor Programmer's Reference
Manual) . Times are given in clock periods, which I'll call
cycles; a 10-MHz processor executes 10 cycles per micro­
second. In general. the tables give the base time for each
instruction. Most base times must have additional times
added in for the operands. For instance, the time to ex­
ecute ANOW 00,(A1)+ is 8 cycles for a word-size AND­
to-memory and 4 more cycles for the (A1)+ destination
operand. (The source operand is "free" because it's a
register.) Thus, the entire instruction takes 12 cycles, or
1.2 p,sec on a 10-MHz processor.

When you're trying to save a few cycles in a crucial loop,
timing tables can be useful as more than just a reference.
They provide a concise summary of the architecture-sort
of a shopping list of the instructions available and the cost
of each. When you're trying to avoid preconceived no­
tions of which instructions are sUited to solving a problem,
this summary can remind you of alternatives and en­
courage lateral drift in your thinking.

CODING FOR SPEED: BASIC RULES
The MOVEQ, AOOQ, and SUBQ instructions are great.
For instance, it's faster to zero all 32 bits of a data register
by using MOVEQ #O,On than it is to use CLR.L On.
Remember that these instructions are limited to small
numbers: MOVEQ can load values from ':"128 to 127 in-

. to a data register; AOOQ (SUBQ) can add (subtract) only
values from 1 to 8 to (from) its destination.

OBee is especially efficient; use it whenever you can.
(But beware the traps described above.)

Not all assemblers automatically produce "short"
branches (branches with 8-bit displacements). Check the
output of your assembler to see if it emits a short branch
whenever possible. If not. you may have to use BRA.S,
BSR.S, and Bee.S in your source code instead of BRA
BSR , and Bee.

(continued)

TRICKS AND TRAPS

Because a taken short branch is slower than an untaken
one, try to avoid taking most branches. For instance, if you
have a loop searching for a null, the simple way to search
is with

LOOP

TSIB (A3) +

BNE.S LOOP

; Here to search for the
; next null.
; Check next byte; advance
; the search pointer.
; Loop back if not found.

It takes only a bit more space to "unroll" one or more
iterations of the loop:

LOOP

TSIB (A3)+

BEQ.S FOUND
TSIB (A3)+

BNE.S LOOP

FOUND

; Here to search for the
; next null.
; Check next byte; advance
; the search pointer.
; If zero, exit the loop.
; Not zero: check another
; byte and advance.
; If still not found,
; loop back.
; Come here when A1 points
; one past the null byte.

If the character tested generally isn't zero. the BEQ.S
usually goes untaken and is faster. You can unroll any
number of iterations, adding TSTB/BEQ.S pairs until the
extra space consumed is no longer worth the diminish­
ing increase in speed (or the branches become long
branches) .

Addressing with (An) + is faster than with - (An). If you
have the choice of which direction to go in a search or
other loop through memory, move upward. (Note that this
is not true for the destination operand of a MOVE
instruction.)

Because (An) addressing is faster than x(An), access to
the first element of a data structure is faster than to the
others. (This is also useful with Pascal records, C struc­
tures, etc.)

The MOVEM instruction is a very efficient way to stack
or unstack a large number of registers. But if you have
to push only two registers, or pop three, MOVEM is no
faster than moving them one at a time.

Don't assume that long operations are always slower
than word-size ones. For instance, word address opera­
tionscan be slower than long ones because of the time
to sign-extend a word value.

As with other machines, never multiply or divide by a
power of 2 when you can shift instead. Although shifts
are time-consuming, they're always faster than a multiplica­
tion or division. So, you can use the ASL (arithmetic shift
left) instruction to multiply by a power of 2 and use ASR
(arithmetic shift right) to divide by a power of 2. (Be careful
here-the right shift is not the same as a division if the
contents of the register are negative. For example, - 1
divided by 2 should be zero, but - 1 shifted right by 1
bit is - 1, rounded incorrectly.) Don't forget that the multi­
plication instructions produce a long-word result from a
word operand; shifting doesn't.

To mUltiply by 2, add a register to itself instead of shift-

168 BY T E • SEPTEM BER 1986

ing: ADD On, On. In fact. if you are multiplying a word
operand by 4, you can do it faster with two ADD instruc­
tions than with a single shift by 2 bits.

Similarly, in doing extended-precision arithmetic. you
can replace the common operation ROXL #1 ,Dn with
ADDX Dn,Dn and save 2 or 4 cycles, depending on
whether the operands are words or longs.

You can compute certain multiplications faster with shifts
even if they're not powers of 2. For instance, to multiply
DO by 17, add DO to 16 times DO:

MOVE 00,01 ; Copy DO to 01.
LSL #4,00 ; Compute 16 x DO in ~O.
ADD 01,00 ; Add original value in to

; compute 17 x DO.

Computing products this way is still faster than the 40-plus
cycles for a multiply instruction.

The cost of maintaining the stack can be lessened if argu­
ments are deleted after the call by the caller, not the sub­
routine. (Most C compilers use this stack protocol.) If the
stack doesn't have to be cleaned up after every call. you
can allow debris from several calls in a row to accumulate
as long as it's easy to keep track of how much there is.
Typically, you can let it pile up until you reach a branch,
then unstack it all with an ADDQ (or LEA if there's more
than 8 bytes to remove) .

Finally, don't ignore the 68000's "higher-level " instruc­
tions. Even at the assembler level. instructions such as
PEA LINK, UNLK, and CHK can be very useful.

CODING FOR SPEED: SOME COOKBOOK EXAMPLES
Here are a variety of things you can do to save time when
you're scraping for cycles. Some are useful in many ap­
plications; others are very specialized. The more obscure
ones are examples of the kinds of tricks that the 68000
can do.

Remember that timings will not be the same on the
68000's relatives (the 68008, 68010, 68020, etc.). If you're
working on one of these processors, recompute the tim­
ings or, when you're not sure which of two approaches
is faster, measure the speed of both. Timings for the 68020
will be especially hard to compute because of its sophis­
ticated prefetch and instruction caching.

You should also know that not all computers run the pro­
cessor at the advertised speed. For instance, the Macin­
tosh's 68000 runs at 7.8 MHz, but it can't always operate
at this speed because the screen is memory-mapped and
"steals" some memory cycles. Thus, the effective speed
of the Macintosh is about 6 MHz, but only memory cycles
are slowed down-CPU cycles are unaffected. So opera­
tions done mostly within the CPU (such as multiply, divide,
and long register shifts) run at nearly full speed. The lesson
in all this is that timings are hard to compute or intuit
you may want to time various pieces of code for yourself
to see which is faster.

It is said that one doesn't really know how to use a tool
until one knows three ways to abuse it. Here are some
of my favorite ways to abuse the 68000.

(continued)

TRICKS AND TRAPS

Fast subroutine calls. Although JSR and RTS provide
a simple subroutine call-and-return. the cost of pushing
the return address on the stack is significant. For a very
frequently called subroutine. you can change the call to
store the return in an address register as in

LEA RETURN,AO ; Return address goes in AO.
JMP routine ; Jump to the subroutine.

RETURN ; AO points to this spot.

Then to return. just JMP (AD). By avoiding use of memory.
this saves 8 cycles. (Note that the LEA instruction refer­
ences the label RETURN with PC-relative addressing.)

Also. if you end a subroutine with

JSR lastsub ; Call one last subroutine
RTS ; and return .

and lastsub doesn't alter the stack. you can save a whop­
ping 24 cycles by using "tail recursion" to replace the two
instructions with a single

JMP lastsub ; "Call" lastsub and
; it 'll return for us.

Finally, if you call a subroutine and then branch some­
where else, you can avoid extra jumping around. For
instance.

JSR sub ; Make a call
JMP next ; and go somewhere else.

can be made slightly faster with

PEA next
JMP sub

; Push a fake return address
; and "call ."
; sub will RTS to next for us.

(All of the above work for BSR and BRA as well as JSR
and JMP.)

Quick test for zero. If you want to test whether a register
is zero and don't mind trashing the value. use DBRA

Dn,NOTZERO instead of combining TSTW Dn with BNE
NOTZERO.

If you want to do an N-way branch depending on a value.
you'll usually want to index into a jump table and transfer
to the appropriate address. A "case" statement is typically
implemented this way. But if you have a very small number
of values and want to handle the lower values more quick­
ly. a series of DBRAs can do th is conveniently. For exam­
ple, if you want to branch based on a register that con­
tains 0, I. or 2,

DBRA DO,NOTO ;Decrement; jump if it wasn't
; zero.

< handle zero case>
NOTO ; Come here if not zero.

; DO has been decremented.
DBRA DO,NOT1 ; Decrement; jump if original

; DO wasn't one.
< handle one case>

NOT1 ; Not one. DO has been
; decremented twice.

DBRA DO,ERROR ; Decrement; if not originally
; two, error.

< handle two case>

Checking for membership in a small set. If you want
to see if a number is in a set of several numbers, you can
create a bit mask corresponding to the set. For instance.
if the set is {O, 1.3,5 } , the mask has those bits set and the
bit map is 0010101 I (2B hexadecimal) . You can test for
membership in this set with

BTST DO, #$2 B ; Is DO in {0,1 ,3,5}?

If your set is composed of more than eight elements you
have to move the mask into a data register first.

Quick comparisons. To check the value of a data regis­
ter with CMPL #xxx,Dn takes 14 cycles. If the value be­

(continued)

GREATER PERFORMANCE ... AT HALF THE COST!
DATA I/O 29B™COMPATIBILITY-UNDER $1,500

Programming A World of Technologies
UNIVERSAL, GANG & SET PROGRAMMING FOR LAB AND LIGHT PRODUCTION

BYTEK ALWAYS SETTING HIGHER STANDARDS
• Supports MOS/CMOS EPROM/EEPROMs including Megabit

devices. Options: Bipolar PROMs, Logic Array Devices, 40
pin Micro Chips, and GangCel

• Memory capacity to 1Mbyte, 64 bit wide programming, device
type and parameters stored in non·volatile memory

• 3·Way device type selection : manually, auto 10 or from menu
• 2·Way command execution: Function keys or· menu
• Data I/O PROMlink TM and BYTEK PROMsoft™ compatible

21 Day No Obligation
Trial Period

$1,495
26 Key·32 Character LCD display· Memory expandable to 1 Megabyte

RS232 PC I nterface , Parallel Printer Port

COMPLETE
Model:

S125.GL ORDER TODAY •
800-523-1565 I In Fla. - 1-305-994-3520

Telex : 4998369 BYTEK
Data liD , PROMllnk are trademarks of Data l i D, Inc.

MADE IN THE U.S.A. I-I c:EI Mastercard or Visa Welcome

~ Instrument Systems Division. 1021 South Rogers Circle. Boca Raton,Florida 33431

170 BY T E • SEPTEMBER 1986 Inquiry 57

TRICKS AND TRAPS

ing tested for is small enough to fit in a MQVEO, it's
shorter and faster to put the value in a temporary register:

MOVEO #xxx,OO
CMP.L OO,On

; Set up value to look for
; and do the comparison.

If the value xxx is between -8 and 8, and you don't mind
altering the data register, you can just use SUBO #xxx,Dn
(or ADDO, as appropriate) instead of a CMP. Then you
can use a conditional branch just as you would after a
CMP. This works for word or long-word comparisons.

Picking up an unaligned word. The straightforward ap­
proach is to load 1 byte, shift it into position, and load
the second byte. The faster way (28 cycles instead of 38)
is to exploit the stack pointer's odd behavior when byte
quantities are pushed on the stack:

MOVE.B (AO)+ ,-(SP); First byte to high half of
; new word on stack.

MOVEW (SP)+,OO ; Pop that new word to ~O.
; First byte in place.

MOVE.B (AO),OO ; Second byte in place.

Clearing address registers. MOVE.L #O,An takes 12
cycles, while SUB.L An,An takes only 8 and is shorter.
(CLR doesn't work with address registers.)

Avoiding long shifts and rotates. The time the 68000
takes to shift a register is proportional to the distance be­
ing shifted: 2 additional cycles for every bit. Thus, never
rotate a long word more than 16 bits in either direction
or a word more than 8 bits. (Remember that to shift by
more than 8 bits, you have to put the shift count into a
data register. In the examples that follow, the bit count
is not a constant; the value is bracketed to show this.)

ROL.L <16+x>,On = ROR.L <16- x >,On
ROLW <8+x>,On = RORW <8-x>,On

In shifting 16 bits or more, the first 16 bits of the shift can
be done with a SWAP to save 26 cycles in each of these
cases:

LSR.L <16+x>,On =
CLRW On ; Clear bits that swap up
SWAP On ; and LSR.L #16,On .
LSRW < x >,On ; Now finish the shift.

ASR.L <16+x>,On =
SWAP On ; Slide down 16 bits.
EXTL On ; Sign-extend to a long word.
ASRW < x > , On ; Finish up, sign-extended.

LSL.L <16+x>,On =
LSLW < x > On ; Shift x bits in low half.
SWAP On ; Shift 16 more bits.
CLRW On ; Throwaway bottom half.

And some long-word operations of less than 16 bits can
be optimized with SWAP. Long shifts between II and 15
bits can be speeded up with

LSL.L <x>,On =
SWAP On
ROR.L <16-x>,On
ANOW #mask,On

; Rotate left by 16 bits.
; Undo to x-bit left rotate.
; Remove bottom x bit~.

172 BY T E • SEPTEMBER 1986

LSR.L <x>,On =
ANOW #mask,On
SWAP On
ROL.L <16-x>,On

; Remove bottom x bits.
; Rotate right by 16 bits,
; Undo to x-bit right rotate.

Fast sign-extend. While there are instructions to sign­
extend bytes into words or words into long words, what
if you have a signed 12-bit field (from unpacking a record
or reading a OAC}? The standard way to sign-extend this
to a full 16-bit word is with

LSLW #16-12,On ; Shift so 12-bit field is left-justified.
ASRW #16-12,On ; Shift it back down sign-extended.

If you know that the bits outside the 12-bit field are zero,
you can do this without shifting. In general. if you want
to Sign-extend an N-bit field to 16 bits, define "mask" to
be _(2(N-I)}-a mask with the bottom N+ 1 bits clear. Then
the sign extension can be done using a temporary register:

MOVEW #mask,OO ; Build mask with high N+1 bits set.
AOOW OO,On ; Negative: top bits=O.

; Positive: top bits=1.
EORW OO,On ; Flip so top bits are correct.

This is always at least as fast as the shifting method, which
gets slower as N increases. Sign-extending to a long word
is faster this way if N is 3 or more.

Loading large constants, 1b move certain values into the
upper half of a data register, you might code MOVE,L
#OOxxOOOO, Dn. It's faster to replace this single instruction
with two:

MOVEO #xx, On ; Move value to lower half
; and clear upper half.

SWAP On ; Swap-put things in position.

Clearing the upper half of a data register. Instead of do­
ing this with AND.L #$FFFF,Dn, it's quicker to use

SWAP On ; Swap high and low halves.
CLRW On ; Clear high half while it's low.
SWAP On ; Put things back in place.

CONCWSIONS
Esoteric coding techniques continue to be important in
pushing processors to their limits. A machine such as
68000, which is oriented toward executing compiled high­
level languages, can still be appropriate for tight hand­
crafted solutions. A programmer who needs the utmost
in performance can exploit quirks in an instruction set to
great advantage. _

BIBLIOGRAPHY
Harmon, Thomas L.. and Barbara Lawson. The Motorola 68000

Microprocessor Family. Englewood Cliffs, N): Prentice-Hall. 1985.
Kane, Gerry, Doug Hawkins, and Lance Leventhal. 68000 Assembly

Ltmguage Programming. Berkeley, CA: Osborne/McGraw-HilI. 1981.
Motorola Inc. M68000 /6/32-bit Microprocessor Programmer's Reference

Manual. Englewood Cliffs, N) : Prentice-Hall. 1984.
Scanlon, Leo). The 68000: Principles and Programming. Indianapolis.

IN: Howard W. Sams. 1981.
Starnes, Thomas W. "Design Philosophy Behind Motorola's

MC68000." BYTE, April-)une 1983.
Williams, Steve. Programming the 68000. Berkeley, CA: Sybex, 1985.

,

