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68000 TRICKS 
AND TRAPS 

BY MIKE MORTON 

Some assembly language programming guidelines 

THE ERA OF HIGH-LEVEL LANGUAGES has not made 
assembly language coding a dead art. even on modern 
microprocessors designed for executing compiled high­
level code. Although personal computers are approaching 
the power of mainframes. the way to get the most out of 
any processor is to know when to use assembly language. 
The popular Motorola MC68000 processor is a good ex­
ample; it has a fairly regular instruction set and instruc­
tions to support features of such languages as Pascal and 
C. Yet the instruction set is not perfectly orthogonal-warts 
in the design and implementation make the architecture 
interesting for hand-coded assembly programs. 

The continuing usefulness of assembly language. even 
on this processor. is apparent in recent industry products. 
The Macintosh ROM. for instance. is written entirely in 
assembly language. yielding considerable savings in mem­
ory and speed. 

In this article I'll survey some of the subtleties of the 
68000 to help you avoid its pitfalls and exploit its oddi­
ties for better speed or memory use. I assume that you 
have some experience using the 68000; if not. see the 
bibliography at the end of this article. 

TRAPS FOR THE BEGINNER 
Most of the 68000's "traps" have a reason behind them; 
unintuitive aspects of the processor may actually be more 
useful. easier to implement. or correct in the view of the 
68000 designers. 

One trap is memory alignment. Although the 68000 sup­
ports byte. word. and long-word operations. word and 
long-word operands must be aligned on word boundaries 
(even addresses). This is because memory is grouped in 

words (2 bytes) and accessed via a 16-bit bus. Instructions 
must be word-aligned also. but assemblers and linkers nor­
mally do this for you. 

Another trap is stack direction. The 68000 stack "grows" 
toward low memory. This means that to allocate stack 
space you should subtract from the stack pointer: 
SUB #size,SP. 1b deallocate space (or to discard previous­
ly pushed values). add to the stack pointer. Equally con­
fusing. when allocating local storage with the LINK instruc­
tion. you must specify a negative displacement to be add­
ed to the stack pointer. 

The stack pointer (SP) must stay word-aligned. If you 
push or pop a byte through the SP. the processor will 
move a word to or from the stack. placing the relevant 
byte in the high-order half of that word. Only the SP 
behaves this way; other address registers act the way you'd 
expect. This may seem an anomaly in an orthogonal ar­
chitecture. but the SP must stay word-aligned so that words 
and long words are pushed to even addresses. 

Shift and rotate instructions can operate on the byte. 
word. or long-word part of a data register. but shifts of 
memory operands can be only word size. Data registers 
can be shifted by up to 32 bits if the shift count is specified 
in another register or by up to 8 bits if the shift count is 
a constant given in the instruction. Memory can be shifted 
by only 1 bit. 

The syntax of two"Operand instructions may be reversed 
from other machines you're used to. For instance. the 
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68000 instruction MOVEW 00,01 is equivalent to lOAD 
01, DO on some other machines: that is. the contents of 
the DO register are moved into 01. On the 68000. the des­
tination register-the one affected by the instruction-is 
always second: The operand order for CMP instructions 
is also reversed from some older machines: therefore you 
would read CMP 00,01 as "compare DI to DO. " (But 
beware: Some assemblers reverse the order of the 
operands from Motorola's standard: UNIX assemblers 
often do this.) 

The 68000 provides the comparison operations shown 
in table I. This includes not only all six possible relation­
ships between two numbers. but also whether numbers 
are compared as signed or unsigned quantities. (Compar­
ing the word values 0006 and FFFE hexadecimal depends 
on how the numbers are interpreted. If they're signed 
numbers. 6 is greater than -2 . But if they're addresses. 
they're unsigned. and 0006 is a lower address than FFFE.) 

The confusing thing is that the expected unsigned equiv­
alents of BlT and BGE are not BHS (branch on higher 
or same) and BlO (branch on lower) . Instead. Motorola 
uses BCS and BCC. respectively. The processor is perfect­
ly orthogonal. providing for all types of comparisons. But 
the mnemonics are asymmetrical on the unsigned side 
(unless you use a nonstandard assembler or define your 
own macros). 

(The distinction between signed and unsigned com­
parisons comes up rarely. since they are the same unless 
one of the values involved has the high-order bit Ithe sign 
bitl set. However. when the distinction is significant. it can 
lead to trouble. An operating system's disk allocator may 
sort disk blocks using a BGT instruction. After some years. 
a site tries to configure a system with more than 231 bytes 
of disk storage. Everything grinds to a halt because BGT 
compares 80000010 hexadecimal to 7FFFFFFO hexadeci­
mal and incorrectly finds the latter address to be greater. 
A BHI instruction would have compared and sorted the 
addresses correctly.) 

A note on using the condition codes: After a TST in­
struction. the overflow (V) condition code is cleared. This 
means that after TST. BlT is equivalent to BMI. and BGE 
is the same as BPL. Stylistically. BMI and BPl make more 

Table I: This table shows which branch instructions will 
result in a branch taken when testing for a given relation­
ship of 01 to DO after a CMP 00,01 instruction. 

Relationship Signed Unsigned 

01 < DO BLT BCS (branch on Carry Set) 
01 < = DO BLE BLS 
01 = DO BEQ BEQ 

01 * DO BNE BNE 
01 > DO BGT BHI 
01 > = DO BGE BCC (branch on Carry Clear) 
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sense after a TST unless the value being tested is the dif­
ference of two other values. 

TRAPS FOR EXPERTS 
Some quirks of the 68000 are less intuitive and regularly 
catch seasoned programmers. Some of these aspects of 
the implementation suggest design difficulties and trade­
offs in the processor: others reflect the designers' ideas 
on what constitutes good . programming. 

Addresses and data are different. Most assemblers 
quietly assemble MOVE #O,An as a MOVEA (move to an 
address register) instruction without nagging the program­
mer about the distinction between MOVE and MOVEA. 
But the 68000 treats data and address values very 
differently. 

Address operations (MOVEA. AOOA. etc.) are never 
byte-size. 

Word values are sign-extended to 32 bits before being 
used in address operations. Thus. AOOA.W 01 ,A2 extends 
the low-order word of 01 before adding it to A2. In the 
68000. there is no such thing as a \6-bit address. so a 
word-size value is converted to 32 bits before being used 
in address operations. 

Address operations never set condition codes: most 
data operations do. This is useful in subroutines that return 
information in the condition codes: 

TSTW DO ; Set condition codes to 
; return to caller. 

MOVE.L (SP) + ,AD ; Pop return address into AD. 
ADDW #params,SP ; Deallocate < params> bytes 

; of parameters. 
JMP (AD) ; Return with condition codes 

; still set. 

(Note that the MOVE and ADD are translated into MOVEA 
and AOOA by the assembler.) The condition codes set by 
the TSTW are unaffected by the remainder of the exit 
sequence. 

Another trap concerns loop operations. A loop ending 
with a OSee instruction (such as OBEQ) loops until the 
condition ee is true: this instruction can be thought of as 
"decrement and branch back if condition false." This is 
confusing since. if you were to write out several instruc­
tions to replace a OBEQ. they would contain a BNE to 
jump back to the top of the loop. not a BEQ. 

If the condition being tested for is not detected (or if 
you're using OBRA). the loop will stop when the counter 
reaches - 1. not O. If you want the loop always to be ex­
ecuted Once. you should enter it at the top with the count 
already decremented by 1. For example. to search for the 
first null (zero) byte in a table of N bytes pointed to by AI: 

MOVEW#N-1,DO ; Start the loop counter 

LOOP 

TS1B (A1)+ 

; one too low. 
; Come here to test 
; another byte. 
; Is A1's byte zero? 
; (Advance after testing) 

DBEQ DO.LOOP ; If not zero AND DO is 
; still > = 0, loop back. 
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This loop will execute at most N times. It corresponds to 
Pascal 's "repeat . .. until" construct. For the equivalent of 
"while ... do, " which doesn't necessarily enter the loop: 

MOVEW #N ,OO 
BRA LOOPSTART 

LOOP 
TS1B (A1) + 

LOOPSTART 

OBEO OO,LOOP 

; Start the loop counter normally. 
; Don't fudge ~O ; jump to 
; the loop end first. 
; This is the loop head. 
; Is A1's byte zero? 
; (Advance after testing) 
; Enter here to check count 
; before looping. 
; If not zero AN 0 DO is 
; still > = 0, loop back. 

If you're using OBee, don't forget to initialize the condi­
tion codes so the OBee doesn't fall through when you 
jump to it. In the code above, the MOVEW #N, 00 
"primes" for the loop. 

Also remember that the data register used to control 
the loop is decremented as a word quantity. If it's possi­
ble to have more than 216 iterations, you have to nest two 
OBee loops. For example, to checksum a list of bytes 
whose length is specified in the long word DO: 

MOVEO #0, 03; Initialize checksum. 
MOVEW 00,01 ; Low word of loop length in 01. 
MOVE.L, 00,02 ; Get high word of loop length 
SWAP 02 ; in 02 to use for outer loop. 
BRA.S START ; Enter at the end of the loop. 

LOOP: AOO.B (A1) + ,03 ; Add the next byte into sum . 
START: OBRA 01, LOOP ; I nner loop: Loop on low word of 

~O. 
OBRA 02,LOOP ; Outer loop: Loop on high word. 

Small adjustments to the stack pointer can be done with 
AOOQ (or SUBQ) #n ,SP, but these instructions can 
change it by at most 8 bytes. The fastest way to change 
it by more than 8 bytes is with LEA n(SP),SP. 

The 68000 does not allow you to execute a MOVE in­
struction with a destination relative to the program counter 
(PC) . In the view of the 68000 designers, code should not 
patch itself. If you must change a table in the middle of 
code, you must point to it with an instruction like LEA 
TABLE(PC),An and then alter it through An. (Self­
modifying code is especially bad for 68000 programs that 
may someday run on the 68020, because the 68020's in­
struction cache normally assumes that code is pure.) 

For no apparent reason, the CLR instruction always 
reads from an operand before clearing it. But unlike BCLR, 
CLR doesn't set the condition codes. Never use CLR to 
write a zero to a memory-mapped device address if the 
device will be affected by the read. The See instruction 
and MOVEs from the status register also read before 
writing but are less likely to cause problems. 

Don't confuse the EXG and SWAP commands. EXG ex­
changes the 32-bit contents of two registers. SWAP swaps 
the 16-bit halves of a single data register. 

When indexing into an array, remember to multiply the 
index register by the "stride" (bytes per element) of the 
array. For instance, if DO holds an index into an array of 
long words pointed to by AI. you must multiply the in-
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dex by 4 to convert from long words to bytes: 

MULU #4,00 ; Turn the array index into 
; a byte offset. 

MOVE.L 0(A1 ,00.L),01 ; Pick up the long-word 
; array element in 01 . 

The EOR instruction must have a data register for the 
source, except for the immediate form of the instruction, 
EORI. 

CODING FOR SPEED: PRINCIPLES 
The secret of efficient code on the 68000 can be described 
using one word: "registers." Suppose, for example, that 
you have two 32-bit variables. If you keep them in regis­
ters, the time to add one to the other with AOO.L 00,01 
is 8 clock periods. If they're in memory pointed to by ad­
dress registers, the time to add them with MOVE.L (AO) , 00 
and AOD.L 00,(A1) is 32 clock periods, four times slower! 
The moral of the story is simple: Work hard to keep fre­
quently used quantities in registers. 

You can learn this important rule and others by study­
ing instruction timing information (such as the tables in 
the M68000 16/32-oit Microprocessor Programmer's Reference 
Manual) . Times are given in clock periods, which I'll call 
cycles; a 10-MHz processor executes 10 cycles per micro­
second. In general. the tables give the base time for each 
instruction. Most base times must have additional times 
added in for the operands. For instance, the time to ex­
ecute ANOW 00,(A1)+ is 8 cycles for a word-size AND­
to-memory and 4 more cycles for the (A1)+ destination 
operand. (The source operand is "free" because it's a 
register.) Thus, the entire instruction takes 12 cycles, or 
1.2 p,sec on a 10-MHz processor. 

When you're trying to save a few cycles in a crucial loop, 
timing tables can be useful as more than just a reference. 
They provide a concise summary of the architecture-sort 
of a shopping list of the instructions available and the cost 
of each. When you're trying to avoid preconceived no­
tions of which instructions are sUited to solving a problem, 
this summary can remind you of alternatives and en­
courage lateral drift in your thinking. 

CODING FOR SPEED: BASIC RULES 
The MOVEQ, AOOQ, and SUBQ instructions are great. 
For instance, it's faster to zero all 32 bits of a data register 
by using MOVEQ #O,On than it is to use CLR.L On. 
Remember that these instructions are limited to small 
numbers: MOVEQ can load values from ':"128 to 127 in-

. to a data register; AOOQ (SUBQ) can add (subtract) only 
values from 1 to 8 to (from) its destination. 

OBee is especially efficient; use it whenever you can. 
(But beware the traps described above.) 

Not all assemblers automatically produce "short" 
branches (branches with 8-bit displacements). Check the 
output of your assembler to see if it emits a short branch 
whenever possible. If not. you may have to use BRA.S, 
BSR.S, and Bee.S in your source code instead of BRA 
BSR , and Bee. 
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Because a taken short branch is slower than an untaken 
one, try to avoid taking most branches. For instance, if you 
have a loop searching for a null, the simple way to search 
is with 

LOOP 

TSIB (A3) + 

BNE.S LOOP 

; Here to search for the 
; next null. 
; Check next byte; advance 
; the search pointer. 
; Loop back if not found. 

It takes only a bit more space to "unroll" one or more 
iterations of the loop: 

LOOP 

TSIB (A3)+ 

BEQ.S FOUND 
TSIB (A3)+ 

BNE.S LOOP 

FOUND 

; Here to search for the 
; next null. 
; Check next byte; advance 
; the search pointer. 
; If zero, exit the loop. 
; Not zero: check another 
; byte and advance. 
; If still not found, 
; loop back. 
; Come here when A1 points 
; one past the null byte. 

If the character tested generally isn't zero. the BEQ.S 
usually goes untaken and is faster. You can unroll any 
number of iterations, adding TSTB/BEQ.S pairs until the 
extra space consumed is no longer worth the diminish­
ing increase in speed (or the branches become long 
branches) . 

Addressing with (An) + is faster than with - (An). If you 
have the choice of which direction to go in a search or 
other loop through memory, move upward. (Note that this 
is not true for the destination operand of a MOVE 
instruction.) 

Because (An) addressing is faster than x(An), access to 
the first element of a data structure is faster than to the 
others. (This is also useful with Pascal records, C struc­
tures, etc.) 

The MOVEM instruction is a very efficient way to stack 
or unstack a large number of registers. But if you have 
to push only two registers, or pop three, MOVEM is no 
faster than moving them one at a time. 

Don't assume that long operations are always slower 
than word-size ones. For instance, word address opera­
tionscan be slower than long ones because of the time 
to sign-extend a word value. 

As with other machines, never multiply or divide by a 
power of 2 when you can shift instead. Although shifts 
are time-consuming, they're always faster than a multiplica­
tion or division. So, you can use the ASL (arithmetic shift 
left) instruction to multiply by a power of 2 and use ASR 
(arithmetic shift right) to divide by a power of 2. (Be careful 
here-the right shift is not the same as a division if the 
contents of the register are negative. For example, - 1 
divided by 2 should be zero, but - 1 shifted right by 1 
bit is - 1, rounded incorrectly.) Don't forget that the multi­
plication instructions produce a long-word result from a 
word operand; shifting doesn't. 

To mUltiply by 2, add a register to itself instead of shift-
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ing: ADD On, On. In fact. if you are multiplying a word 
operand by 4, you can do it faster with two ADD instruc­
tions than with a single shift by 2 bits. 

Similarly, in doing extended-precision arithmetic. you 
can replace the common operation ROXL #1 ,Dn with 
ADDX Dn,Dn and save 2 or 4 cycles, depending on 
whether the operands are words or longs. 

You can compute certain multiplications faster with shifts 
even if they're not powers of 2. For instance, to multiply 
DO by 17, add DO to 16 times DO: 

MOVE 00,01 ; Copy DO to 01. 
LSL #4,00 ; Compute 16 x DO in ~O. 
ADD 01,00 ; Add original value in to 

; compute 17 x DO. 

Computing products this way is still faster than the 40-plus 
cycles for a multiply instruction. 

The cost of maintaining the stack can be lessened if argu­
ments are deleted after the call by the caller, not the sub­
routine. (Most C compilers use this stack protocol.) If the 
stack doesn't have to be cleaned up after every call. you 
can allow debris from several calls in a row to accumulate 
as long as it's easy to keep track of how much there is. 
Typically, you can let it pile up until you reach a branch, 
then unstack it all with an ADDQ (or LEA if there's more 
than 8 bytes to remove) . 

Finally, don't ignore the 68000's "higher-level " instruc­
tions. Even at the assembler level. instructions such as 
PEA LINK, UNLK, and CHK can be very useful. 

CODING FOR SPEED: SOME COOKBOOK EXAMPLES 
Here are a variety of things you can do to save time when 
you're scraping for cycles. Some are useful in many ap­
plications; others are very specialized. The more obscure 
ones are examples of the kinds of tricks that the 68000 
can do. 

Remember that timings will not be the same on the 
68000's relatives (the 68008, 68010, 68020, etc.). If you're 
working on one of these processors, recompute the tim­
ings or, when you're not sure which of two approaches 
is faster, measure the speed of both. Timings for the 68020 
will be especially hard to compute because of its sophis­
ticated prefetch and instruction caching. 

You should also know that not all computers run the pro­
cessor at the advertised speed. For instance, the Macin­
tosh's 68000 runs at 7.8 MHz, but it can't always operate 
at this speed because the screen is memory-mapped and 
"steals" some memory cycles. Thus, the effective speed 
of the Macintosh is about 6 MHz, but only memory cycles 
are slowed down-CPU cycles are unaffected. So opera­
tions done mostly within the CPU (such as multiply, divide, 
and long register shifts) run at nearly full speed. The lesson 
in all this is that timings are hard to compute or intuit 
you may want to time various pieces of code for yourself 
to see which is faster. 

It is said that one doesn't really know how to use a tool 
until one knows three ways to abuse it. Here are some 
of my favorite ways to abuse the 68000. 
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Fast subroutine calls. Although JSR and RTS provide 
a simple subroutine call-and-return. the cost of pushing 
the return address on the stack is significant. For a very 
frequently called subroutine. you can change the call to 
store the return in an address register as in 

LEA RETURN,AO ; Return address goes in AO. 
JMP routine ; Jump to the subroutine. 

RETURN ; AO points to this spot. 

Then to return. just JMP (AD). By avoiding use of memory. 
this saves 8 cycles. (Note that the LEA instruction refer­
ences the label RETURN with PC-relative addressing.) 

Also. if you end a subroutine with 

JSR lastsub ; Call one last subroutine 
RTS ; and return . 

and lastsub doesn't alter the stack. you can save a whop­
ping 24 cycles by using "tail recursion" to replace the two 
instructions with a single 

JMP lastsub ; "Call" lastsub and 
; it 'll return for us. 

Finally, if you call a subroutine and then branch some­
where else, you can avoid extra jumping around. For 
instance. 

JSR sub ; Make a call 
JMP next ; and go somewhere else. 

can be made slightly faster with 

PEA next 
JMP sub 

; Push a fake return address 
; and "call ." 
; sub will RTS to next for us. 

(All of the above work for BSR and BRA as well as JSR 
and JMP.) 

Quick test for zero. If you want to test whether a register 
is zero and don't mind trashing the value. use DBRA 

Dn,NOTZERO instead of combining TSTW Dn with BNE 
NOTZERO. 

If you want to do an N-way branch depending on a value. 
you'll usually want to index into a jump table and transfer 
to the appropriate address. A "case" statement is typically 
implemented this way. But if you have a very small number 
of values and want to handle the lower values more quick­
ly. a series of DBRAs can do th is conveniently. For exam­
ple, if you want to branch based on a register that con­
tains 0, I. or 2, 

DBRA DO,NOTO ;Decrement; jump if it wasn't 
; zero. 

< handle zero case> 
NOTO ; Come here if not zero. 

; DO has been decremented. 
DBRA DO,NOT1 ; Decrement; jump if original 

; DO wasn't one. 
< handle one case> 

NOT1 ; Not one. DO has been 
; decremented twice. 

DBRA DO,ERROR ; Decrement; if not originally 
; two, error. 

< handle two case> 

Checking for membership in a small set. If you want 
to see if a number is in a set of several numbers, you can 
create a bit mask corresponding to the set. For instance. 
if the set is {O, 1.3,5 } , the mask has those bits set and the 
bit map is 0010101 I (2B hexadecimal) . You can test for 
membership in this set with 

BTST DO, #$2 B ; Is DO in {0,1 ,3,5}? 

If your set is composed of more than eight elements you 
have to move the mask into a data register first. 

Quick comparisons. To check the value of a data regis­
ter with CMPL #xxx,Dn takes 14 cycles. If the value be­
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ing tested for is small enough to fit in a MQVEO, it's 
shorter and faster to put the value in a temporary register: 

MOVEO #xxx,OO 
CMP.L OO,On 

; Set up value to look for 
; and do the comparison. 

If the value xxx is between -8 and 8, and you don't mind 
altering the data register, you can just use SUBO #xxx,Dn 
(or ADDO, as appropriate) instead of a CMP. Then you 
can use a conditional branch just as you would after a 
CMP. This works for word or long-word comparisons. 

Picking up an unaligned word. The straightforward ap­
proach is to load 1 byte, shift it into position, and load 
the second byte. The faster way (28 cycles instead of 38) 
is to exploit the stack pointer's odd behavior when byte 
quantities are pushed on the stack: 

MOVE.B (AO)+ ,-(SP); First byte to high half of 
; new word on stack. 

MOVEW (SP)+,OO ; Pop that new word to ~O. 
; First byte in place. 

MOVE.B (AO),OO ; Second byte in place. 

Clearing address registers. MOVE.L #O,An takes 12 
cycles, while SUB.L An,An takes only 8 and is shorter. 
(CLR doesn't work with address registers.) 

Avoiding long shifts and rotates. The time the 68000 
takes to shift a register is proportional to the distance be­
ing shifted: 2 additional cycles for every bit. Thus, never 
rotate a long word more than 16 bits in either direction 
or a word more than 8 bits. (Remember that to shift by 
more than 8 bits, you have to put the shift count into a 
data register. In the examples that follow, the bit count 
is not a constant; the value is bracketed to show this.) 

ROL.L <16+x>,On = ROR.L <16- x >,On 
ROLW <8+x>,On = RORW <8-x>,On 

In shifting 16 bits or more, the first 16 bits of the shift can 
be done with a SWAP to save 26 cycles in each of these 
cases: 

LSR.L <16+x>,On = 
CLRW On ; Clear bits that swap up 
SWAP On ; and LSR.L #16,On . 
LSRW < x >,On ; Now finish the shift. 

ASR.L <16+x>,On = 
SWAP On ; Slide down 16 bits. 
EXTL On ; Sign-extend to a long word. 
ASRW < x > , On ; Finish up, sign-extended. 

LSL.L <16+x>,On = 
LSLW < x > On ; Shift x bits in low half. 
SWAP On ; Shift 16 more bits. 
CLRW On ; Throwaway bottom half. 

And some long-word operations of less than 16 bits can 
be optimized with SWAP. Long shifts between II and 15 
bits can be speeded up with 

LSL.L <x>,On = 
SWAP On 
ROR.L <16-x>,On 
ANOW #mask,On 

; Rotate left by 16 bits. 
; Undo to x-bit left rotate. 
; Remove bottom x bit~. 
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LSR.L <x>,On = 
ANOW #mask,On 
SWAP On 
ROL.L <16-x>,On 

; Remove bottom x bits. 
; Rotate right by 16 bits, 
; Undo to x-bit right rotate. 

Fast sign-extend. While there are instructions to sign­
extend bytes into words or words into long words, what 
if you have a signed 12-bit field (from unpacking a record 
or reading a OAC}? The standard way to sign-extend this 
to a full 16-bit word is with 

LSLW #16-12,On ; Shift so 12-bit field is left-justified. 
ASRW #16-12,On ; Shift it back down sign-extended. 

If you know that the bits outside the 12-bit field are zero, 
you can do this without shifting. In general. if you want 
to Sign-extend an N-bit field to 16 bits, define "mask" to 
be _(2(N-I)}-a mask with the bottom N+ 1 bits clear. Then 
the sign extension can be done using a temporary register: 

MOVEW #mask,OO ; Build mask with high N+1 bits set. 
AOOW OO,On ; Negative: top bits=O. 

; Positive: top bits=1. 
EORW OO,On ; Flip so top bits are correct. 

This is always at least as fast as the shifting method, which 
gets slower as N increases. Sign-extending to a long word 
is faster this way if N is 3 or more. 

Loading large constants, 1b move certain values into the 
upper half of a data register, you might code MOVE,L 
#OOxxOOOO, Dn. It's faster to replace this single instruction 
with two: 

MOVEO #xx, On ; Move value to lower half 
; and clear upper half. 

SWAP On ; Swap-put things in position. 

Clearing the upper half of a data register. Instead of do­
ing this with AND.L #$FFFF,Dn, it's quicker to use 

SWAP On ; Swap high and low halves. 
CLRW On ; Clear high half while it's low. 
SWAP On ; Put things back in place. 

CONCWSIONS 
Esoteric coding techniques continue to be important in 
pushing processors to their limits. A machine such as 
68000, which is oriented toward executing compiled high­
level languages, can still be appropriate for tight hand­
crafted solutions. A programmer who needs the utmost 
in performance can exploit quirks in an instruction set to 
great advantage. _ 
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